Student's Name:	Student's Name:		
Lab day & time:	Date:		

Standing Waves (M10) - Data Sheets

(Show all calculations and write all results on the data sheets in ink)

Activity 1: Standing Sound Waves In a Tube (Closed On One End) (2 p.)

Frequency f = 600 Hz, $v_{air} = 343$ m/s $L_{eff} = L + 0.01$ m

Theoretical wavelength $\lambda_{theor} =$ (m)

Resonance	Measured Air Column Length L(m)	Effective Air Column Length L _{eff} (m)	$\begin{array}{c} \text{Measured} \\ \text{Wavelength} \\ \lambda (m) \end{array}$	Theoretical Air Column Length <i>L_{theory}</i> (m)	Leff - Ltheory (m)
λ_{4}					
3λ/4					
5λ/4					

Frequency f = 900 Hz, $v_{air} = 343$ m/s $L_{eff} = L + 0.01$ m

Theoretical wavelength $\lambda_{theor} = ___(m)$

Resonance	Measured Air Column Length L (m)	Effective Air Column Length L _{eff} (m)	$\begin{array}{c} \text{Measured} \\ \text{Wavelength} \\ \lambda (m) \end{array}$	Theoretical Air Column Length <i>L</i> _{theory} (m)	L _{eff} - L _{theory} (m)
λ/4					
3λ/4					
^{5λ} /4					

Activity 2: The Fundamental Frequency vs. the Tension of the String (2 p.)

The linear density of the string used in this experiment is equal to: $\mu = 1.84 \times 10^{-3}$ kg/m.

Check if the length of the vibrating part of the string L is set to 60 cm, i.e., that the supporting black metal brackets are at positions "10 cm" and "70 cm".

	Tension force <i>F</i> (N)	$\sqrt{F}\left(\frac{\sqrt{kg*m}}{s}\right)$	Measured fundamental frequency f_l (Hz)	Calculated (Eq. 5) fundamental frequency $f_{1 theory}$ (Hz)
5 Mg	49.0			
4 Mg	39.2			
3 Mg	29.4			
2 Mg	19.6			
1 Mg	9.80			
0 Mg	0	0	0	0

M = 1.00 kg L = 0.600 (m)

Plot the **measured fundamental frequency** f_I vs. \sqrt{F} . Draw the <u>best-fit line</u> (do **not** just connect the points!). Be sure to include the units. It is recommended that you use a <u>computer-graphing program</u> (e.g., MS Excel that is available in all ITaP labs). Use the 'linear fit' or "trendline" option to obtain the value of the slope of the best-fit line. Print this graph and attach it to this report. Write your name and those of your partners on the graph.

Activity 3: Frequency of a String as a Function of Its Length (2 p.)

Adjust the tension in the string to the following value:

$$F = mg = 3 kg*9.8 m/s^2 = 3*9.8 N = 29.4 N.$$

Measure the frequency using the same method as in Activity 2.

Length L_x (cm)	Positions of the supporting brackets	Period $T(s)$	f_x (measured) (Hz)
60.0	10 cm and 70 cm		
50.0	15 cm and 65 cm		
40.0	20 cm and 60 cm		
30.0	25 cm and 55 cm		

Change the length of the vibrating part of the string by moving the two black metal brackets supporting the string. Measure the frequency for the new length.

Copy the measured frequency values from the above table. Calculate the theoretical values of the f_x / f_{60} ratio using Equation (7). Calculate the theoretical values of the f_x / f_{60} ratio using Equation (7).

Length L_x (cm)	Period $T(s)$	f_x (measured) (Hz)	Measured f _x / f ₆₀	Theoretical f_x / f_{60} based on the length ratio (using Eq. 7)
60.0			1	1
50.0				
40.0				
30.0				

Change the length of the vibrating part of the string back to L = 60 cm by moving the two black metal brackets supporting the string to positions at 10 cm and 70 cm.

Quit Capstone application. Do not save any changes.

Complete the lab report and return it to the lab TA.